1. Problem Statement

- Develop a syllabus to study cyber threats and vulnerabilities using big data and secure analytics.
- Develop course materials, instructor notes, interactive videos and lab exercises that will inform and train students in applying learned skills to cyber defense and trusted analytics.
- Leverage current existing research work in big data, cyber security and data processing using trusted hardware extensions (TEE).

2. Course Materials

Developed:
- Machine Learning and Analytics
- Big Data Analytics
- Secure Big Data Analytics

In progress:
- Cyber Threats and Vulnerability Data Processing
- Actionable Insight from Cyber Threat and Vulnerable Data
- High Level knowledge Extraction and Kill Chain Inference

Machine Learning and Analytics

- Module focuses on different machine learning algorithms so that students get an understanding of the emerging techniques.
- Contains three set of PowerPoint slides for the lessons describing text mining, text feature extraction techniques and some efficient classification algorithms such as Support Vector Machines (SVM) and k-Nearest Neighbor Methods (KNN).
- Contains some lab tasks that give empirical knowledge on different classification and feature extraction processes.

Big Data Analytics

- Focuses on data mining & machine learning algorithms for analyzing very large amount of data with the help of tools/frameworks such as Hadoop MapReduce and Spark.
- Contains four modules:
 - Hadoop MapReduce Basics: contains three set of PowerPoint slides for the lessons describing the functionality and mechanisms of MapReduce framework.
 - Hadoop Setup and Programming: contains two set of PowerPoint slides explaining how to setup and program in MapReduce framework and some lab tasks that teach techniques to analyze massive amounts of data using MapReduce.
 - Spark Basics: contains three set of PowerPoint slides for the lessons that discuss Spark, Spark SQL and it’s advantage over Hadoop.
 - Spark Setup and Programming: contains two set of PowerPoint slides explaining how to setup and program in Spark framework and some lab tasks that show techniques for processing vast data using Spark.

Secure Big Data Analytics

- Module focuses on securing big data analytics by using the Intel Software Guard Extension (SGX) as a secure hardware solution.
- Contains the PowerPoint slides on the application of SGX in securing logging operations, the design of SGX-enabled log server, programs and protocols.
- Contains lab tasks that provide comprehensive knowledge to effectively run a new system designed to secure system logs using SGX-based log server.

3. Study Cyber Threat Reports and Vulnerabilities

Learning Objectives

- Allow students to gain actionable insights from cyber threat and vulnerable data repositories.
- Help students gain hands-on experience using techniques from NLP and Big Data Analytics.
- Prepare and instruct students in state-of-the-art skills needed to defend against attack techniques and challenges in software security.

Sample Problem for Lab

Challenges:

- Computer Security Threat reports are in unstructured text format.
- Large scale generation of threat reports due to increase in computer security breaches.
- Requires human analyst to interpret reports and extract meaningful information.
- Limited training data due to limited labeled threat reports.
- Need for automated system in extracting information and classifying threat reports to tactics and techniques

Problem Setting:

- Given a threat report, obtain the tactics and techniques used by the attacker as described in the report.
- After classifying to tactics, students need to identify the techniques used out of the available techniques under the tactics.
- For Technique classification, follow Top-Down approach: classify to tactics and then classify to techniques.
- Requires prunin the techniques under the tactics to identify relevant techniques.

Proposed Solution

- Download threat reports from different computer security vendors.
- Data Cleaning and Filtering to remove noise.
- Apply natural language processing techniques to extract features from unstructured text.
- Apply Classification method such as SVM classifier.

4. Materials Delivered So Far

Machine Learning and Analytics Module Outline

<table>
<thead>
<tr>
<th>Lectures</th>
<th>No. of Slides</th>
<th>Labs</th>
<th>Quiz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Text Mining</td>
<td>26</td>
<td>2 Lab tasks</td>
<td>Assessment Quiz containing 13 questions</td>
</tr>
<tr>
<td>2. Text Feature Extraction</td>
<td>31</td>
<td>2 Lab tasks</td>
<td></td>
</tr>
<tr>
<td>3. Classification Algorithms</td>
<td>47</td>
<td>1 Lab task</td>
<td></td>
</tr>
</tbody>
</table>

Big Data Analytics Unit Outline

<table>
<thead>
<tr>
<th>Module</th>
<th>Lectures</th>
<th>No. of Slides</th>
<th>Labs/Qizzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadoop MapReduce Basics</td>
<td>1. Introduction to Hadoop MapReduce</td>
<td>56</td>
<td>Assessment Quiz containing 20 questions</td>
</tr>
<tr>
<td></td>
<td>2. MapReduce Algorithm Design</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Processing Relational Data with MapReduce</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Hadoop Setup and Programming</td>
<td>1. Hadoop Setup</td>
<td>21</td>
<td>4 Lab tasks</td>
</tr>
<tr>
<td></td>
<td>2. Hadoop Program</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Spark Basics</td>
<td>1. Introduction to Spark</td>
<td>52</td>
<td>Assessment Quiz containing 10 questions</td>
</tr>
<tr>
<td></td>
<td>2. Programming with Spark</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Spark SQL</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spark Setup and Programming</td>
<td>1. Spark Setup</td>
<td>9</td>
<td>4 Lab tasks</td>
</tr>
<tr>
<td></td>
<td>2. Spark Program</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Secure Big Data Analytics Module Outline

<table>
<thead>
<tr>
<th>Lectures</th>
<th>No. of Slides</th>
<th>Labs</th>
<th>Quiz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Installing and Running</td>
<td>N/A</td>
<td>1 Lab task</td>
<td>Assessment Quiz containing 8 questions</td>
</tr>
<tr>
<td>2. Understanding Theory</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Programs and Protocols</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>